- [1] C. Gan, J. Wu, Q. Sun, W. Kong, H. Li, and Y. Hu, (2018) “A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications" IEEE Access 6: 31430–31443. DOI: 10.1109/ACCESS.2018.2837111.
- [2] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, (2017) “Opportunities and challenges of switched reluctance motor drives for electric propulsion: A comparative study" IEEE transactions on transportation electrification 3(1): 58–75. DOI: 10.1109/TTE.2017.2649883.
- [3] J.-W. Ahn and G. F. Lukman, (2018) “Switched reluctance motor: Research trends and overview" CES Transactions on Electrical Machines and Systems 2(4): 339–347.
- [4] D. Mohanraj, J. Gopalakrishnan, B. Chokkalingam, and L. Mihet-Popa, (2022) “Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque RippleReview" IEEE Access: DOI: 10.1109/ACCESS.2022. 3187515.
- [5] M. Deepak, G. Janaki, and C. Bharatiraja, (2022) “Power electronic converter topologies for switched reluctance motor towards torque ripple analysis" Materials Today: Proceedings 52: 1657–1665. DOI: 10.1016/j.matpr.2021.11.284.
- [6] G. Fang, F. P. Scalcon, D. Xiao, R. P. Vieira, H. A. Gründling, and A. Emadi, (2021) “Advanced control of switched reluctance motors (SRMs): A review on current regulation, torque control and vibration suppression" IEEE Open Journal of the Industrial Electronics Society 2: 280–301.
- [7] X. Xue, K. W. E. Cheng, and S. L. Ho, (2009) “Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives" IEEE transactions on power electronics 24(9): 2076–2090. DOI: 10.1109/TPEL.2009.2019581.
- [8] J. Ye, B. Bilgin, and A. Emadi, (2015) “An offline torque sharing function for torque ripple reduction in switched reluctance motor drives" IEEE Transactions on energy conversion 30(2): 726–735. DOI: 10.1109/TEC.2014.2383991.
- [9] D.-H. Lee, J. Liang, Z.-G. Lee, and J.-W. Ahn, (2009) “A simple nonlinear logical torque sharing function for low-torque ripple SR drive" IEEE Transactions on Industrial Electronics 56(8): 3021–3028. DOI: 10.1109/TIE.2009.2024661.
- [10] S. K. Sahoo, S. K. Panda, and J.-X. Xu, (2005) “Indirect torque control of switched reluctance motors using iterative learning control" IEEE Transactions on Power Electronics 20(1): 200–208. DOI: 10.1109/TPEL.2004. 839807.
- [11] H.-H. Lee, Q. Wang, S.-J. Kim, W. Choi, and G.-H. Lee, (2012) “A Simplified torque ripple reduction using the current shaping of the flux switched reluctance motor" Journal of Magnetics 17(3): 200–205. DOI: 10.4283/JMAG.2012.17.3.200.
- [12] H. Li, B. Bilgin, and A. Emadi, (2018) “An improved torque sharing function for torque ripple reduction in switched reluctance machines" IEEE Transactions on Power Electronics 34(2): 1635–1644. DOI: 10.1109/TPEL.2018.2835773.
- [13] S. Song, R. Hei, R. Ma, and W. Liu, (2020) “Model predictive control of switched reluctance starter/generator with torque sharing and compensation" IEEE Transactions on Transportation Electrification 6(4): 1519– 1527. DOI: 10.1109/TTE.2020.2975908.
- [14] S. Song, S. Huang, Y. Zhao, X. Zhao, X. Duan, R. Ma, and W. Liu, (2022) “Torque Ripple Reduction of Switched Reluctance Machine With Torque Distribution and Online Correction" IEEE Transactions on Industrial Electronics 70(9): 8842–8852. DOI: 10.1109/TIE. 2022.3210516.
- [15] Z. Zhu, B. Lee, L. Huang, and W. Chu, (2016) “Contribution of current harmonics to average torque and torque ripple in switched reluctance machines" IEEE Transactions on magnetics 53(3): 1–9. DOI: 10.1109/TMAG.2016.2633477.
- [16] X. Liu, Z. Zhu, and Z. Pan. “Analysis of electromagnetic torque in sinusoidal excited switched reluctance machines having DC bias in excitation”. In: 2012 XXth International Conference on Electrical Machines. IEEE. 2012, 2882–2888. DOI: 10.1109/ICElMach.2012.6350296.
- [17] J. Stephenson, A. Hughes, and R. Mann, (2001) “Torque ripple minimisation in a switched reluctance motor by optimum harmonic current injection" IEE Proceedings-Electric Power Applications 148(4): 322–328. DOI: 10.1049/ip-epa:20010480.
- [18] J. Stephenson, A. Hughes, and R. Mann, (2002) “Online torque-ripple minimisation in a switched reluctance motor over a wide speed range" IEE ProceedingsElectric Power Applications 149(4): 261–267. DOI: 10.1049/ip-epa:20020373.
- [19] N. T. Shaked and R. Rabinovici, (2005) “New procedures for minimizing the torque ripple in switched reluctance motors by optimizing the phase-current profile" IEEE Transactions on magnetics 41(3): 1184–1192. DOI: 10.1109/TMAG.2004.843311.
- [20] C. Ma, L. Qu, R. Mitra, P. Pramod, and R. Islam. “Vibration and torque ripple reduction of switched reluctance motors through current profile optimization”. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE. 2016, 3279–3285. DOI: 10.1109/APEC.2016.7468336.
- [21] O. Gundogmus, Y. Sozer, L. Vadamodala, J. Kutz, J. Tylenda, and R. L. Wright. “Current harmonics injection method for simultaneous torque and radial force ripple mitigation to reduce acoustic noise and vibration in SRMs”. In: 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE. 2019, 7091–7097. DOI: 10.1109/ECCE.2019.8913056.
- [22] J. Chai and C. Liaw, (2010) “Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling" IET Electric Power Applications 4(5): 380–396. DOI: 10.1049/iet-epa.2009.0061.
- [23] H. Cheng, H. Chen, Z. Yang, and W. Huang, (2015) “Braking torque closed-loop control of switched reluctance machines for electric vehicles" Journal of Power Electronics 15(2): 469–478. DOI: 10.6113/JPE.2015.15.2. 469.
- [24] M. Ma, F. Ling, F. Li, and F. Liu, (2020) “Torque ripple suppression of switched reluctance motor by segmented harmonic currents injection based on adaptive fuzzy logic control" IET Electric Power Applications 14(2): 325–335. DOI: 10.1049/iet-epa.2019.0027.
- [25] M. Deepak, G. Janaki, and C. Bharatiraja. “A Mathematical Modelling Approach Switched Reluctance Motor for Low Speed torque ripple minimization by Sensorless Intelligent Control”. In: 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT). IEEE. 2023, 1–6. DOI: 10.1109/GlobConHT56829.2023.10087413.
- [26] M. Deepak, G. Janaki, C. Bharatiraja, et al., (2022) “Design Switched Reluctance Motor Rotor Modification Towards Torque Ripple Analysis For EVs" Journal of Applied Science and Engineering 26(7): 949–958. DOI: 10.6180/jase.202307_26(7).0006.