- [1] R. Tchantchane, H. Zhou, S. Zhang, and G. Alici, (2023) “A review of hand gesture recognition systems based on noninvasive wearable sensors" Advanced In telligent Systems 5(10): 2300207. DOI: 10.1002/aisy.202300207.
- [2] J.Qi,L.Ma,Z.Cui,andY.Yu,(2024)“Computervision based hand gesture recognition for human-robot interac tion: a review" Complex & Intelligent Systems 10(1): 1581–1606. DOI: 10.1007/s40747-023-01173-6.
- [3] J. Yu, H. Li, S.-L. Yin, and S. Karim, (2020) “Dynamic gesture recognition based on deep learning in human-to computer interfaces" Journal of Applied Science and Engineering 23(1): 31–38. DOI: 10.6180/jase.202003_23(1).0004.
- [4] L. Zongxing, H. Baizheng, C. Yingjie, C. Bingxing, Y. Ligang, H. Haibin, and L. Zhoujie, (2023) “Human machine interaction technology for simultaneous gesture recognition and force assessment: A Review" IEEE Sen sors Journal 23(22): 26981–26996. DOI: 10.1109/JSEN.2023.3314104.
- [5] N. Al Mudawi, H. Ansar, A. Alazeb, H. Aljuaid, Y. AlQahtani, A. Algarni, A. Jalal, and H. Liu, (2024) “Innovative healthcare solutions: robust hand gesture recog nition of daily life routines using 1D CNN" Frontiers in Bioengineering and Biotechnology 12: 1401803. DOI: 10.3389/fbioe.2024.1401803.
- [6] J. Yu, L. Zhao, et al., (2021) “A novel deep CNN method based on aesthetic rule for user preferential images rec ommendation" Journal of Applied Science and Engi neering 24(1): 49–55. DOI: 10.6180/jase.202102_24(1).0006.
- [7] D. Ryumin, D. Ivanko, and E. Ryumina, (2023) “Audio-visual speech and gesture recognition by sensors of mobile devices" Sensors 23(4): 2284. DOI: 10.3390/s23042284.
- [8] R. Rastgoo, K. Kiani, S. Escalera, and M. Sabokrou, (2024) “Multi-modal zero-shot dynamic hand gesture recognition" Expert Systems with Applications 247: 123349. DOI: 10.1016/j.eswa.2024.123349.
- [9] W.Li, S. Wu, S. Li, X. Zhong, X. Zhang, H. Qiao, M. Kang, J. Chen, P. Wang, and L.-Q. Tao, (2023) “Ges ture recognition system using reduced graphene oxide enhanced hydrogel strain sensors for rehabilitation train ing" ACS Applied Materials & Interfaces 15(38): 45106–45115. DOI: 10.1021/acsmaterialslett.4c00809.
- [10] M.Alonazi, H. Ansar, N. Al Mudawi, S. S. Alotaibi, N. A. Almujally, A. Alazeb, A. Jalal, J. Kim, and M. Min, (2023) “Smart healthcare hand gesture recognition using CNN-based detector and deep belief network" IEEE Access 11: 84922–84933. DOI: 10.1109/ACCESS.2023.3289389.
- [11] B. I. Alabdullah, H. Ansar, N. A. Mudawi, A. Alazeb, A. Alshahrani, S. S. Alotaibi, and A. Jalal, (2023) “Smart Home Automation-Based Hand Gesture Recog nition Using Feature Fusion and Recurrent Neural Net work" Sensors 23(17): 7523. DOI: 10.3390/s23177523.
- [12] A. S. M. Miah, M. A. M. Hasan, and J. Shin, (2023) “Dynamic hand gesture recognition using multi-branch attention based graph and general deep learning model" IEEE Access 11: 4703–4716. DOI: 10.1109/ACCESS.2023.3235368.
- [13] M. Muneeb, H. Rustam, and A. Jalal. “Automate appliances via gestures recognition for elderly living assistance”. In: 2023 4th International Conference on Advancements in Computational Sciences (ICACS). IEEE. 2023, 1–6. DOI: 10.1109/ICACS55311.2023.10089778.
- [14] J. Liu, X. Wang, C. Wang, Y. Gao, and M. Liu, (2023) “Temporal decoupling graph convolutional network for skeleton-based gesture recognition" IEEE Transactions onMultimedia26:811–823. DOI: 10.1109/TMM.2023.3271811.
- [15] D. Zheng, H. Li, and S. Yin, (2020) “Action recognition based on the modified twostream CNN" International Journal of Mathematical Sciences and Computing 6(6): 15–23. DOI: 10.5815/ijmsc.2020.06.03.
- [16] H.Liang, L. Fei, S. Zhao, J. Wen, S. Teng, and Y. Xu, (2024) “Mask-guided multiscale feature aggregation net work for hand gesture recognition" Pattern Recognition 145: 109901. DOI: 10.1016/j.patcog.2023.109901.
- [17] A.Dayal,M.Aishwarya,S.Abhilash,C.K.Mohan,A. Kumar, and L. R. Cenkeramaddi, (2023) “Adversarial unsupervised domain adaptation for hand gesture recogni tion using thermal images" IEEE Sensors Journal 23(4): 3493–3504. DOI: 10.1109/JSEN.2023.3235379.
- [18] S. Yin, H. Li, Y. Sun, M. Ibrar, and L. Teng, (2024) “Data Visualization Analysis Based on Explainable Arti f icial Intelligence: A Survey" IJLAI Transactions on Science and Engineering 2(2): 13–20.
- [19] S. Yin, H. Li, A. A. Laghari, T. R. Gadekallu, G. A. Sampedro, and A. Almadhor, (2024) “An anomaly detection model based on deep auto-encoder and capsule graph convolution via sparrow search algorithm in 6G internet-of-everything" IEEE Internet of Things Jour nal 11(18): 29402–29411. DOI: 10.1109/JIOT.2024.3353337.
- [20] F. Fu, Y. Gao, Z. Lu, H. Wu, and S. Zhao. “Unsuper vised Continual Learning of Image Representation Via Rememory-Based Simsiam”. In: ICASSP 2024 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2024, 4980–4984. DOI: 10.1109/ICASSP48485.2024.10448032.
- [21] M. Montazerin, E. Rahimian, F. Naderkhani, S. F. Atashzar, S. Yanushkevich, and A. Mohammadi, (2023) “Transformer-based hand gesture recognition from instantaneous to fused neural decomposition of high density EMG signals" Scientific reports 13(1): 11000. DOI: 10.1038/s41598-023-36490-w.
- [22] F. Chen, S. Zhang, L. Hu, J. Fan, C.-H. Lin, P. Guan, Y. Zhou, T. Wan, S. Peng, C.-H. Wang, et al., (2023) “Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition" Advanced Func tional Materials 33(24): 2300266. DOI: 10.1002/adfm.202300266.
- [23] G. Li, D. Bai, G. Jiang, D. Jiang, J. Yun, Z. Yang, and Y. Sun, (2023) “Continuous dynamic gesture recognition using surface EMG signals based on blockchain-enabled internet of medical things" Information Sciences 646: 119409. DOI: 10.1016/j.ins.2023.119409.